Catalog Number:
CPTC-MTOR-10
Target Antigen:
Mechanistic Target Of Rapamycin Peptide 8
Isotype:
IgG
Species:
Rabbit Recombinant Cloned Antibody
Last Updated:
09/01/2022
Antigen Recognition(s):
Peptide
Result: Negative
This PDF contains the evaluation results provided by the Human Protein Atlas (www.proteinatlas.org)
Result: Negative
This PDF contains the evaluation results provided by the Human Protein Atlas (www.proteinatlas.org)
Result: Negative
Western blot using CPTC-MTOR-10 as primary antibody against human FK506 binding protein 12-rapamycin associated protein 1 (FRAP1/MTOR) recombinant protein (lane 2). Molecular weight standards are also included (lane 1). Expected molecular weight – 288.7 kDa.
Result: Presumed Positive (with additional bands)
Western Blot using CPTC-MTOR-10 as primary antibody against cell lysates A549 (lane 2), HeLa (lane 3), Jurkat (lane 4), MCF-7 (lane 5), MOLT-4 (lane 6), and U87 (lane 7). Molecular weight standards are also included (lane 1). U87 is presumed positive. All other cells lines are negative. Expected molecular weight – 289 kDa.
Catalog Number:
CPTC-MTOR-9
RRID:
AB_2820270
Target Antigen:
Mechanistic Target Of Rapamycin Peptide 8
Isotype:
IgG
Species:
Rabbit Monoclonal Antibody
Last Updated:
09/01/2022
Antigen Recognition(s):
Peptide, Recombinant Full-length, Endogenous, Phosphorylation
Thematic Panel(s):
Ras Pathway
Result: Negative
This PDF contains the evaluation results provided by the Human Protein Atlas (www.proteinatlas.org)
Result: Negative
Immunofluorescence staining of MCF10a cells stably transfected with KRAS (MCF10a-KRAS) using CPTC-MTOR-9 antibody. MTOR protein expression was not detected.
Result: Negative
This PDF contains the evaluation results provided by the Human Protein Atlas (www.proteinatlas.org)
Result: Positive
Western Blot using CPTC-MTOR-9 as primary Ab against recombinant MTOR (lane 2). Also included are molecular wt. standards (lane 1).
Result: Positive
Western Blot using CPTC-MTOR-9 as primary Ab against MCF10A-KRAS cell lysate (lane 2). Also included are molecular wt. standards (lane 1).
NCI Identification Number:
00256
Antigen Name:
Mechanistic Target Of Rapamycin Peptide 8
CPTC Name:
CPTC-MTOR Peptide 8
Aliases:
Mechanistic Target Of Rapamycin; Mechanistic Target Of Rapamycin (Serine/Threonine Kinase); Rapamycin And FKBP12 Target 1; Mammalian Target Of Rapamycin; FK506-Binding Protein 12-Rapamycin Complex-Associated Protein 1; FK506 Binding Protein 12-Rapamycin Associated Protein 2; FKBP12-Rapamycin Complex-Associated Protein 1; Rapamycin Associated Protein FRAP2; FKBP-Rapamycin Associated Protein; Rapamycin Target Protein 1; FRAP1; FRAP2; RAFT1; RAPT1; FRAP; DJ576K7.1 (FK506 Binding Protein 12-Rapamycin Associated Protein 1); FK506 Binding Protein 12-Rapamycin Associated Protein 1; FKBP12-Rapamycin Complex-Associated Protein; Rapamycin Target Protein; EC 2.7.11.1; MTOR; SKS
Function:
The protein encoded by this gene belongs to a family of phosphatidylinositol kinase-related kinases. These kinases mediate cellular responses to stresses such as DNA damage and nutrient deprivation. This protein acts as the target for the cell-cycle arrest and immunosuppressive effects of the FKBP12-rapamycin complex. The ANGPTL7 gene is located in an intron of this gene.
MTOR (Mechanistic Target Of Rapamycin) is a Protein Coding gene. Diseases associated with MTOR include smith-kingsmore syndrome and isolated focal cortical dysplasia type iib. Among its related pathways are Gene Expression and Signaling by GPCR. GO annotations related to this gene include transferase activity, transferring phosphorus-containing groups and protein serine/threonine kinase activity. An important paralog of this gene is SMG1.
Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at Ser-758, disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at Ser-473 of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at Ser-422. Regulates osteoclastogensis by adjusting the expression of CEBPB isoforms (By similarity).
Chromosomal Localization:
1p36
Accession Number:
NP_004949.1
UniProt Accession Number:
P42345
DNA Source:
N/A
Immunogen:
Synthetic Peptide
Vector Name:
N/A
Extinction Coefficient:
Buffers:
Expressed Sequence:
TGTTVPESIH(pS)FIGDGLVKPEALNKK
Native Sequence:
Calculated Isoelectric Point:
0
Molecular Weight:
2860
Last Updated:
04/19/2018
No SOPs available.
Get it for free at Adobe.com