STANDARD OPERATING PROCEDURE

Title: Kinetics and Affinity Evaluation of Monoclonal Antibodies and Protein Interactions Using Biolayer Interferometry (BLI) on the Sartorius Octet Red96e

SOP#: M-141

Version #: 1

Authors: T. Caceres

Date Approved: August 31, 2021

Date Modified:

1. PURPOSE

This procedure will describe how to measure the equilibrium constant, K_D , the association rate constant, K_a , and the dissociation rate constant, K_d , of purified proteins or peptides and their purified cognate monoclonal antibodies by Biolayer Interferometry using a Sartorius Octet 96e instrument.

2. SCOPE

This procedure will describe sample preparation and operation of the Sartorius Octet Red96e instrument using either a capture or amine coupling immobilization method to measure affinity and kinetics parameters.

3. <u>RESPONSIBILITY</u>

It is the responsibility of person(s) performing this procedure to be familiar with lab safety procedures. It is the responsibility of person(s) performing this procedure to have read the references listed at the end of this document for proper training. Data analysis must be done by a person trained in the procedure and trained in the interpretation of results using the Data Analysis HT software. It is the responsibility of the analyst to follow the procedure steps as written and to document any deviations, problems, and observations during an experiment in their laboratory notebook.

4. EQUIPMENT

- 4.1. Octet Red96e[™]System; Pall ForteBio, Part No: 30-5051
- 4.2. Rainin Pipet plus LTS Pipettor, adjustable 100-1000 μL
- 4.3. Rainin Pipet plus LTS Pipettor, adjustable 20-200 µL
- 4.4. Rainin Pipet plus LTS Pipettor, adjustable 2-20 µL
- 4.5. Rainin Pipet plus LTS Pipettor, adjustable 0.1-2 μL
- 4.6. ForteBio Biosensor Dispenser (1.0 uL 10.0 uL) for biosensor(s) transfer
- 4.7. Multichannel pipettor, 20 uL 200 uL

4.8. Evaporation cover (white), Sartorius, Part #: 18-5132

5. MATERIALS

- 5.1. Octet® Anti-Mouse Fc Capture (AMC) Biosensors, Sartorius, Part #: 18-5088
- 5.2. Octet® Amine Reactive 2nd Generation (AR2G) Biosensors, Sartorius, Part #: 18-5092
- 5.3. Octet® Protein A (ProA) Biosensors, Sartorius, Part #: 18-5010
- 5.4. Octet® Protein G (ProG) Biosensors, Sartorius, Part #: 18-5082
- 5.4. Amine Coupling Second Generation Reagent Kit Part #: 18-5095
 - 10mM Sodium Acetate pH 4.0 Part #: 18-1068
 - 10mM Sodium Acetate pH 5.0 Part #: 18-1069
 - 10mM Sodium Acetate pH 6.0 Part #: 18-1070
 - 1M Ethanolamine pH 8.5 Part #: 18-1071
 - EDC 1g Part #: 18-1033
 - Sulfo-NHS 573mg Part #: 18-1067
- 5.5. 10X Kinetics Buffer, Sartorius, Part #:18-1092
- 5.6. Bio-Rad ProteOn[™] Glycine Buffer, pH 2.0 Cat.#: 176-2221
- 5.7. PBS 10X Solution Ultra Pure VWR Part #: J373-4L
- 5.8. Deionized, 0.22 µM filtered H₂O, In-house or equivalent
- 5.9. 96-well, black microplates Greiner Bio-One Part #: 655209
- 6.0. 1.5 mL Eppendorf polypropylene tubes, or equivalent

6. <u>REAGENTS</u>

- 6.1. Protein(s) or peptide(s) corresponding to desired target
- 6.2. Monoclonal antibody or antibodies corresponding to desired cancer related Protein or peptide

7. PROCEDURE

7.1. Preparation of the Sartorius Octet Red96e instrument

- 7.1.1. Turn on the computer.
- 7.1.2. Turn the Octet instrument on using the power switch located on the external electrical box. The 8-channel biosensor manifold will move within the instrument as the instrument completes a self-check. Wait until this self-check finishes.
- 7.1.3. Launch the Octet System Data Acquisition software Version 11.1 by double-clicking on the Data Acquisition desktop icon.
- 7.1.4. Select New Kinetics Experiment (Basic Kinetics) from the Experiment Wizard
- 7.1.5. Click the green arrow to open a *Blank Experiment* template.

7.2. Kinetics Analysis Using the Anti-Mouse IgG Fc Capture (AMC) or Protein A/G Biosensor

- 7.2.1. On the bench, pipette 200 uL/ well of deionized, 0.22 μm H₂O into wells A1 – H1 and A2 – H2 of a new Greiner Bio-One black 96 well plate (hydration tray).
- 7.2.2. Open a new pack of anti-mouse IgG Fc capture (AMC) biosensors if analyzing mouse antibody kinetics or a new pack of Protein A/G biosensors if analyzing rabbit antibody kinetics (this biosensor can also be used for mouse antibody kinetics if the AMC biosensor is unavailable). Or alternatively, a pack that has already been opened can also be used if it is has been stored properly with the opening sealed shut.
- 7.2.3. Gently place the green biosensor tray containing sixteen AMC biosensors (or Protein A/G biosensors) that correspond to wells A1 H1 and A2 H2 on top of the hydration tray (black) taking care not to touch the tips of the biosensors. If necessary, use the Octet dedicated multichannel pipettor to transfer biosensors to the appropriate wells in the green biosensor tray before placing it on top of the hydration tray.

- 7.2.4. Place the biosensor hydration tray into the Octet Red 96e instrument on the left side. Hydrate the sixteen AMC biosensors (or Protein A/G biosensors) for at least ten minutes.
- 7.2.5. Remove the 10X kinetics buffer from 4°C and let it equilibrate to room temperature.
- 7.2.6. In a 50 mL conical tube, dilute 2.0 mL of 10X PBS into 18 mL of 0.22 um filtered H₂O making a 20 mL 1X PBS stock solution.
- 7.2.7. In a 50 mL conical tube, dilute 2.0 mL of 10X Kinetics Buffer into 18
 mL of 1X PBS solution making a 20 mL 1X kinetics buffer stock solution.
- 7.2.8. Add 200 uL of 1X kinetics buffer to wells A1 H1 (B), A3 H3 (B), H4 (Red, *no analyte reference well*), and A12 H12 (B) of a new Greiner Bio-One black 96 well assay plate. See below.

- 7.2.9. Remove the test monoclonal antibody (mouse or rabbit) from storage (4°C or -20°C).
- 7.2.10. Dilute the antibody in 1X Kinetics Buffer to the optimum ligand concentration that was determined in assay development tests or elsewhere. Commonly used concentrations fall in the 5 25 ug/mL range to yield a surface density of 5 10 nanometers. Each well requires 200 uL of diluted antibody ligand. For eight wells, prepare 1.8 mL total volume of diluted antibody ligand.

Note: See <u>Appendix A</u> for specific recommendations for identifying an optimum ligand antibody concentration.

- 7.2.11. Vortex.
- 7.2.12. Add 200 uL of the diluted antibody ligand to wells A2 H2 (L) of the assay plate.
- 7.2.13. Remove the test protein or peptide analyte(s) from storage. Let the test analyte(s) equilibrate to room temperature. If necessary, reconstitute the test protein or peptide analyte(s) according to the commercial vendor instructions.
- 7.2.14. Using 1.5 mL Eppendorf tubes, prepare the test analyte at a concentration range that is approximately 0.1X 100X the K_D of the binding interaction. If no knowledge of the kinetics is available, dilute the analyte to 1024 nM in 1X kinetics buffer. Serially dilute the 1024 nM to prepare 4-fold dilutions as seen below.

- 7.2.15. Add 200 uL of the diluted test analyte protein to sample wells A4 G4 (Pink) of the assay plate (7.2.8).
- 7.2.16. Carefully place the assay plate inside the Sartorius Octet Red96e instrument on the right side. Use the arrow indicator to guide the correction positioning of the plate.
- 7.2.17. After the plate has been inserted properly in the instrument, proceed to set up the assay method (use of the evaporation cover is optional for overnight assays or higher than room temperature experiments).

7.2.18. Kinetics Assay Setup on the Octet

7.2.18.1. Click on File -> Open Method File...

- 7.2.18.2. Navigate to Share -> Instrumentation -> Octet -> SOP Protocols, and open the **AMC_Kinetics_Template**
- 7.2.18.3. In the *Plate Definition* tab, highlight the *Test Ligand* in Wells A2-H2 under the Sample ID Column.
- 7.2.18.4. Right click after selecting all wells and select Set Well Data.
- 7.2.18.5. Input the appropriate name of the test antibody ligand.
- 7.2.18.6. The test antibody ligand concentration default setting is 5 ug/mL. Modify the concentration if necessary.
- 7.2.18.7. Highlight the *Test Analyte* in Wells A4 H4 under the Sample ID column.
- 7.2.18.8. Right click after selecting all wells and select Set Well Data.
- 7.2.18.9. Input the appropriate name of the test analyte.
- 7.2.18.10. Input the molecular weight of the test analyte (kDa).
- 7.2.18.11.Input the molar concentration of the test analyte (nM) that was prepared. Input '0' for the molar concentration of the buffer <u>reference well</u>.

NOTE: Be sure to include a no analyte reference well (red well).

Well	Sample ID	Replicate Group	Туре	Conc (µq/ml)	MW (kD)	Molar Conc (nM)	Information
B A1	1X Kinetics Buffer		Buffer				
🖲 B1	1X Kinetics Buffer		Buffer				
B C1	1X Kinetics Buffer		Buffer				
D1	1X Kinetics Buffer		Buffer				
E1	1X Kinetics Buffer		Buffer				
B F1	1X Kinetics Buffer		Buffer				
B G1	1X Kinetics Buffer		Buffer				
B H1	1X Kinetics Buffer		Buffer				
L A2	Test Ligand		Load	5			
B2	Test Ligand		Load	5			
C2	Test Ligand		Load	5			
🕛 D2	Test Ligand		Load	5			
E 2	Test Ligand		Load	5			
 F2	Test Ligand		Load	5			
G 2	Test Ligand		Load	5			
U H2	Test Ligand		Load	5			
B A3	1X Kinetics Buffer		Buffer				
B3	1X Kinetics Buffer		Buffer				
B C3	1X Kinetics Buffer		Buffer				
B D3	1X Kinetics Buffer		Buffer				
B E3	1X Kinetics Buffer		Buffer				
B F3	1X Kinetics Buffer		Buffer				
B G3	1X Kinetics Buffer		Buffer				
B H3	1X Kinetics Buffer		Buffer				
O A4	Test Analyte		Sample	102.4	100	1024	
B 4	Test Analyte		Sample	25.6	100	256	
O C4	Test Analyte		Sample	6.4	100	64	
O D4	Test Analyte		Sample	1.6	100	16	
E 4	Test Analyte		Sample	0.4	100	4	
F 4	Test Analyte		Sample	0.1	100	1	
O G4	Test Analyte		Sample	0.025	100	0.25	
H 4	Test Analyte		Referen	0	100	0	

7.2.18.12.Click on the Assay Definition tab. Verify the assay settings are as seen below:

Step) Data Lis	t							
	Add Copy		ору	Remov	ve Reger	neration Params	Threshold	Params	
	Name	Tim	ne Shak	e speed	Туре	Threshold			
→	Baseline	180	1000		🛥 Baseline				
	Loading	300	1000		Loading				
	Equilibra	tion 600	1000		🛥 Baseline				
	Associat	ion 600	1000		Association				
	Dissocia	tion 600	1000		Dissociation				
Ass N	ay Steps ew Assay	List Mov Sample	e Up	Move Do	wn Remov	e Replicate Sensor Type	Edit Step	Info Table	Time Comment
Ass No As	ay Steps ew Assay <u>say No.</u> 1	List Mov Sample 1	re Up Step N Equilibr	Move Do Iame ation •	wn Remov Step Type ∞ Baseline	e Replicate Sensor Type AMC (Anti-mlqC	Edit Step	Info Table Assay	Time Comment
Ass No As 1	ay Steps ew Assay say No. 1 2	List Mov Sample 1 2	e Up Step N Equilibr Loading	Move Do lame ation •	wn Remove Step Type	e Replicate Sensor Type AMC (Anti-mlaC AMC (Anti-mlaC	Edit Step	Info Table Assay	Time Comment
Ass No As 1 1	ay Steps ew Assay say No. 1 2 3	List Mov Sample 1 2 3	e Up Step N Equilibr Loadino Baselin	Move Do lame ation •	wn Remove Step Type baseline ∠ Loading baseline	e Replicate Sensor Type AMC (Anti-mlgC AMC (Anti-mlgC AMC (Anti-mlgC	Edit Step	Info Table Assay	Time Comment
Ass: No As 1 1 1 1	ay Steps ew Assay say No. 1 2 3 4	List Mov Sample 1 2 3 4	e Up Equilibr Loadino Baselin Associa	Move Do lame ation • a e ation	wn Remove Step Type → Baseline ✓ Loading → Baseline ✓ Association	e Replicate Sensor Type AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC	Edit Step	Info Table Assay	Time Comment
Ass: N As 1 1 1 1 1	ay Steps ew Assay sav No. 1 2 3 4 5	List Mov Sample 1 2 3 4 3	e Up Equilibr Loadino Baselin Associa Dissoci	Move Do lame ation • a e ation ation	wm Remove Step Type → Baseline ✓ Loading → Baseline ✓ Association → Dissociation	e Replicate Sensor Type AMC (Anti-mlaC AMC (Anti-mlaC AMC (Anti-mlaC AMC (Anti-mlaC AMC (Anti-mlaC	Edit Step	Info Table Assay O:38:40	Time Comment
Ass: No As 1 1 1 1 1 1 2	ay Steps ew Assay sav No. 1 2 3 4 5 1	List <u>Sample</u> 1 2 3 4 3 1	e Up Equilibr Loadino Baselin Associa Dissoci	Move Do lame ation • a e ation ation ation	wn Remove Step Type Baseline Loading Baseline Association Dissociation Dissociation Baseline	e Replicate <u>Sensor Type</u> AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC	Edit Step	Info Table Assay O:38:40	Time Comment
Ass: No As 1 1 1 1 1 2 2	ay Steps ew Assay say No. 1 2 3 4 5 5 1 2	List Mov Sample 1 2 3 4 3 1 12	e Up Step N Equilibr Loadino Baselin Associa Dissoci Fauilibr Loadino	Move Do lame ation - e ation ation ation	wn Remove ► Baseline ✓ Loading ► Baseline ✓ Association ► Dissociation ► Baseline ✓ Loading	e Replicate Sensor Type AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC	Edit Step	Info Table Assay O:38:40	Time Comment
Assa N Ass 1 1 1 1 1 1 2 2 2	ay Steps ew Assay say No. 1 2 3 4 5 1 2 3 3	List Mov Sample 1 2 3 4 3 1 12 3	e Up Equilibr Loadino Baselin Associa Dissoci Fauilibr Loadino Baselin	Move Do lame ation • a e stion ation ation ation ation a	wn Remove Step Type Baseline ∠ Loading Baseline ∠ Association Baseline ∠ Loading Baseline ∠ Loading Baseline	e Replicate Sensor Type AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC	Edit Step	Info Table Assay O:38:44	Time Comment
Ass: No As 1 1 1 1 1 1 2 2 2 2	ay Steps I ew Assay No. 1 2 3 4 5 1 2 3 4 5 1 2 3 4	List Mov Sample 1 2 3 4 3 1 12 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 3 4 3 4 3 4 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	e Up Equilibr Loadino Baselin Associa Dissoci Fouilibr Loadino Baselin Associa	Move Do lame ation • l e e ation ation ation ation ation ation	wn Remove Step Type Baseline ∠ Loading Baseline ∠ Association Baseline ∠ Loading Baseline ∠ Association	e Replicate Sensor Type AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC AMC (Anti-mlqC	Edit Step	Info Table Assay O:38:40	Time Comment

7.2.18.13.Click on the Sensor Assignment tab. Verify the biosensors appear as seen below. Optionally, check the box above the tray image to return the sensors back to its original location rather than to the waste compartment.

Note: The yellow biosensors (Column 2) are the reference biosensors. They are required to test for non-specific binding. If the absence of non-specific binding of the analyte for the biosensor has already been determined, these biosensors may be omitted from the assay.

- 7.2.18.14.Click on the Review Experiment tab. Review the assay steps by moving the blue slider.
- 7.2.18.15.Click on the Run Experiment tab. In the "Data File Location and Names" section, assign a primary directory folder destination in the "Kinetics data repository" field but clicking on the ellipses and creating folder in that destination. Assign a secondary "Experiment run name" folder within the primary destination clicking on the arrow and creating folder in that destination. In the "Run Settings" section check the "Delayed experiment start" box and get the timer for 600 seconds. Check the box with the option to "Shake sample plate while waiting". Check the box with the option for "Open runtime charts automatically" as well as the sub

option "Automatically save runtime chart". Check the option "Set plate temperature (*C) to 25. Within the "Advanced Settings" location, set the acquisition rate to "Standard kinetics (5.0Hz, averaging by 20) ". Then proceed to start the experiment by clicking on the green "Go" button. 7.2.18.16. Skip to section 7.4 for Data Analysis.

7.3. Kinetics analysis using the Amine Reactive 2nd Generation (AR2G) Biosensor

Note: The use of AR2G biosensors is recommended for interactions with very strong (pM affinity) binding.

- 7.3.1. On the bench, pipette 200 uL/ well of deionized, 0.22 μm H₂O into wells A1 H1 of a new Greiner Bio-One black 96 well plate (hydration tray).
- 7.3.2. Open a new pack of Amine Reactive 2nd Generation (AR2G) biosensors. Or alternatively, a pack that has already been opened can also be used if it is has been stored properly with the opening sealed shut.
- 7.3.3. Gently place the green biosensor tray containing eight AR2G biosensors that correspond to wells A1 H1 on top of the hydration tray (black) taking care not to touch the tips of the biosensors. If necessary, use the Octet dedicated multichannel pipettor to transfer biosensors to the appropriate wells in the green biosensor tray before placing it on top of the hydration tray.
- 7.3.4. Place the biosensor hydration tray into the Octet Red 96e instrument on the left side. Hydrate the eight AR2G biosensors for at least ten minutes.
- 7.3.5. Remove the 10X kinetics buffer from 4°C and let it equilibrate to room temperature.
- 7.3.6. In a 50 mL conical tube, dilute 2.0 mL of 10X PBS into 18 mL of 0.22 um filtered H₂O making a 20 mL 1X PBS stock solution.

- 7.3.7. In a 50 mL conical tube, dilute 2.0 mL of 10X Kinetics Buffer into 18 mL of 1X PBS solution making a 20 mL 1X kinetics buffer stock solution.
- 7.3.8. Add 200 uL of 0.22 um filtered H₂O to wells A1 H1 (B) in a new Greiner Bio-One black 96 well assay plate. See below.

- 7.3.9. Remove one aliquot each of EDC (400 mM) and s-NHS (200 mM) from the -20C. Thaw at room temperature.
- 7.3.10. Vortex briefly after thawing.
- 7.3.11. Prepare 1800 μ L of a 20 mM EDC and 10 mM s-NHS working reagent mix by adding 90 μ L each of the stock EDC and s-NHS reagents to 1620 μ L of water. Mix thoroughly. Pipette 200 μ L/well of the EDC/s-NHS mixture into wells A2 – H2 (A).

Note: Use or refreeze EDC and s-NHS aliquots within 10 hours of thawing. Use EDC and s-NHS within 1 hour of mixing them together.

- 7.3.12. Add 200 uL of 1X kinetics buffer to wells A5 H5 (B) and H6 (Red, *no analyte reference well*).
- 7.3.13. Remove 1M ethanolamine pH 8.5 from 4C.
- 7.3.14. Add 200 uL of 1M ethanolamine pH 8.5 to wells A4 H4 (Q).
- 7.3.15. Remove the test monoclonal antibody (mouse or rabbit) from storage (4°C or -20°C).

7.3.16. Dilute the antibody in 10 mM sodium acetate pH 5.0 to the optimum ligand concentration that was determined in assay development tests or elsewhere. Commonly used concentrations fall in the 5 – 25 ug/mL range, or a surface density of 5 – 10 nanometers. Each well requires 200 uL of diluted antibody ligand. For eight wells, prepare 1.8 mL total volume of diluted antibody ligand.

Note: See <u>Appendix A</u> for specific recommendations for identifying an optimum ligand antibody concentration. Note: It may be necessary to optimize the pH of the antibody immobilization prior to running a kinetics assay. See <u>Appendix A</u> for specific recommendations.

- 7.3.17. Vortex.
- 7.3.18. Add 200 uL of the diluted antibody ligand to wells A3 H3 (L) of the assay plate.
- 7.3.19. Remove the test protein or peptide analyte(s) from storage. Let the test analyte(s) equilibrate to room temperature. If necessary, reconstitute the test protein or peptide analyte(s) according to the commercial vendor instructions.
- 7.3.20. Using 1.5 mL Eppendorf tubes, prepare the test analyte at a concentration range that is approximately 0.1X 100X the K_D of the binding interaction. If no knowledge of the kinetics is available, dilute the analyte to 1024 nM in 1X kinetics buffer. Serially dilute the 1024 nM to prepare 4-fold dilutions as seen below.

- 7.3.21. Add 200 uL of the diluted test analyte protein to sample wells A6 G6 (Pink) of the assay plate.
- 7.3.22. Carefully place the assay plate inside the Sartorius Octet Red96e instrument on the right side. Use the arrow indicator to guide the correction positioning of the plate. Optional use of the evaporation cover will be dependent on temperature or delay run time of the assay.
- 7.3.23. After the plate has been inserted properly in the instrument, proceed to set up the assay method.

7.3.24. Kinetics Assay Setup on the Octet

7.3.24.1. Click on File -> Open Method File...

- 7.3.24.2. Navigate to Share -> Instrumentation -> Octet -> SOP Protocols, and open the *AR2G_Kinetics_Template*
- 7.3.24.3. In the *Plate Definition* tab, highlight the *Test Ligand* in Wells A3-H3 under the Sample ID Column.
- 7.3.24.4. Right click after selecting all wells and select Set Well Data.
- 7.3.24.5. Input the appropriate name of the test antibody ligand.
- 7.3.24.6. The test antibody ligand concentration default setting is 5 ug/mL. Modify the concentration if necessary.
- 7.3.24.7. Highlight the *Test Analyte* in Wells A6 H6 under the Sample ID column.
- 7.3.24.8. Right click after selecting all wells and select Set Well Data.
- 7.3.24.9. Input the appropriate name of the test analyte.
- 7.3.24.10. Input the molecular weight of the test analyte (kDa).
- 7.3.24.11.Input the molar concentration of the test analyte (nM) that was prepared. Input '0' for the molar concentration of the buffer <u>reference well</u>.

NOTE: Be sure to include a no analyte reference well

(red well).

Well	Sample ID	Replicate Group	Туре	Conc (µq/ml)	MW (kD)	Molar Conc (nM)	Information	^
@ A1	WATER		Buffer					
1 B1	WATER		Buffer					
(B) C1	WATER		Buffer					
D1	WATER		Buffer					
(B) E1	WATER		Buffer					
B F1	WATER		Buffer					
1 G1	WATER		Buffer					
B H1	WATER		Buffer					
A2	EDC+s-NHS		Activation					
🖲 B2	EDC+s-NHS		Activation					
C2	EDC+s-NHS		Activation					
🖲 D2	EDC+s-NHS		Activation					
🕭 E2	EDC+s-NHS		Activation					
F2	EDC+s-NHS		Activation					
🕭 G2	EDC+s-NHS		Activation					
H2	EDC+s-NHS		Activation					
A3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
B3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
C 3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
D 3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
E3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
 F3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
G 3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
H3	Test Antibody		Load	5			in 10 mM sodium acetate pH 5.0	
A4	1M Ethanolamine		Quench					
@ B4	1M Ethanolamine		Quench					
@ C4	1M Ethanolamine		Quench					
@ D4	1M Ethanolamine		Quench					
@ F4	1M Ethanolamine		Quench					
@ F4	1M Ethanolamine		Quench					
@ G4	1M Ethanolamine		Quench					
@ H4	1M Ethanolamine		Quench					
B A5	1X Kinetics Buffer		Buffer					
B B5	1X Kinetics Buffer		Buffer					
B C5	1X Kinetics Buffer		Buffer					
B D5	1X Kinetics Buffer		Buffer					
B F5	1X Kinetics Buffer		Buffer					
(B) E5	1X Kinetics Buffer		Buffer					
B G5	1X Kinetics Buffer		Buffer					
B H5	1X Kinetics Buffer		Buffer					
O A6	Test Analyte		Sample	102.4	100	1024		
	Test Analyte		Sample	25.6	100	256		
0.06	Test Analyte		Sample	64	100	64		
	Tost Analyto		Sample	1.6	100	16		
	Tost Analyte		Sample	0.4	100	10		
			Sample	0.4	100	4		
	Test Apolito		Sample	0.025	100	0.25		
	Test Analyte		Deference	0.025	0	0.20		
H0	rest Analyte		Reference	U	U	U		~

7.3.24.12. Click on the Assay Definition tab. Verify the assay settings are as seen below:

Add	Сору		Remov	e Regen	Regeneration Params		ld Params		
Name Time Shake speed		speed	Гуре	Threshold	t				
Equilibratio	on 60	1000	3	Custom					
Activation	300	1000	1	Activation					
Loading	900	1000	1	Loading					
Quenching	300	1000	1	L Quenching					
Baseline2	300	1000	1	 Baseline 					
Associatio	n 600	1000	1	Association					
Dissociatio	on 600	1000	1	Dissociation					
av Steps Li	st								
ay Steps Li: ew Assay	st Move	Up M	ove Dov	vn Remove	e Replicate	Edit Step	Info Tab	e	
ay Steps Li aw Assay Say No. S	st Move Sample S	Up M Step Nar	ove Dov	vn Remove Step Type	e Replicate Sensor Type	Edit Step	Info Tab	e Assay Time	Comment
ay Steps Lis ew Assay say No. S 1 1	st Move Sample	Up M Step Nar	love Dov ne : on - i ∄	vn Remove Step Type ≇ Custom	e Replicate Sensor Type AR2G (Amine	Edit Step Reactive 2nd	Info Tab Gen) 🔹	e Assay Time	Comment
ny Steps Lis w Assay say No. S 1 1 2 2	st Move Sample :	Up M Step Nar Equilibration	ove Dov ne	vn Remove Step Type ≇ Custom ⊾ Activation	Replicate Sensor Type AR2G (Amine AR2G (Amine	Edit Step Reactive 2nd Reactive 2nd	Info Tab Gen) • I Gen)	e Assay Time	Comment
ny Steps Lis ny Assay say No. S 1 1 2 2 3 3	st Move Sample 9 /	Up M Step Nar Equilibration Activation	ove Dov	vn Remove Step Type ⊈ Custom ▲ Activation ∠ Loading	e Replicate Sensor Type AR2G (Amine AR2G (Amine AR2G (Amine	Edit Step Reactive 2nd Reactive 2nd Reactive 2nd	Info Tab Gen) • Gen) Gen)	e Assay Time	Comment
y Steps Liz w Assay say No. S 1 1 2 2 3 3 4 4	st Move Sample E	Up M Step Nar Equilibration Activation Loading Quenching	ove Dov	vn Remove Step Type 2 Custom 4 Activation 2 Loading 2 Quenching	e Replicate Sensor Type AR2G (Amine AR2G (Amine AR2G (Amine AR2G (Amine	Edit Step Reactive 2nd Reactive 2nd Reactive 2nd Reactive 2nd	Info Tab Gen) • Gen) Gen) Gen) Gen)	e Assay Time	Comment
ay Steps Li aw Assay 5 ay No. S 1 1 2 2 3 4 4 5 5	Sample 9	Up M Step Nar Equilibration Activation Loading Quenchino Baseline2	ove Dov	m Remove Step Type	e Replicate Sensor Type AR2G (Amine AR2G (Amine AR2G (Amine AR2G (Amine AR2G (Amine	Edit Step Reactive 2nd Reactive 2nd Reactive 2nd Reactive 2nd Reactive 2nd	Info Tab Gen) • Gen) Gen) Gen) Gen)	e Assay Time	Comment
ay Steps Li aw Assay say No. S 1 1 2 2 3 3 4 4 5 5 6 6 6	st Move Gample 9 1	Up M <u>Step Nar</u> <u>quilibratic</u> Activation Quenching Quenching Baseline2 Associatio	ove Dov ne	In Remove Step Type 4 Custom Activation Loading Quenching Baseline Association	e Replicate Sensor Type AR2G (Amine AR2G (Amine AR2G (Amine AR2G (Amine AR2G (Amine AR2G (Amine	Edit Step Reactive 2nd Reactive 2nd Reactive 2nd Reactive 2nd Reactive 2nd	Info Tab Gen) • Gen) Gen) Gen) Gen) Gen)	e Assay Time	Comment

7.3.24.13.Click on the Sensor Assignment tab. Verify the biosensors appear as seen below. Check the box above the sensor tray image to return the sensors for reuse once the assay is complete, rather than the waste container.

Note: Include a set of reference biosensors if there is non-specific binding of the analyte for the biosensor.

7.3.24.14.Click on the Review Experiment tab. Review the assay steps by moving the blue slider.

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

7.3.24.15. Click on the Run Experiment tab. In the "Data File Location and Names" section, assign a primary directory folder destination in the "Kinetics data repository" field but clicking on the ellipses and creating folder in that destination. Assign a secondary "Experiment run name" folder within the primary destination clicking on the arrow and creating folder in that destination. In the "Run Settings" section check the "Delayed experiment start" box and get the timer for 600 seconds. Check the box with the option to "Shake sample plate while waiting". Check the box with the option for "Open runtime charts automatically" as well as the sub option "Automatically save runtime chart". Check the option "Set plate temperature (*C) to 25. Within the "Advanced Settings" location, set the acquisition rate to "Standard kinetics (5.0Hz, averaging by 20) ". Then proceed to start the experiment by clicking on the green "Go" button.

7.4. Data Analysis

- 7.4.1. Open the ForteBio Data Analysis HT 11.1.3.50 software. Click on the new workspace icon at the left of the screen.
- 7.4.2. Browse to the project folder where the run was saved. Drag the pink results folder to the middle of the new workspace.
- 7.4.3. After the sensorgrams from the assay are loaded, click on the "Pre-Processed Data" tab at the top of the page.
- 7.4.4. Select "Full Traces" in the middle of the screen. Highlight the sample biosensor A1 and the reference biosensor A2 simultaneously to examine the sensorgrams. Determine the presence or absence of non-specific binding of the analyte for the no-ligand biosensor. The reference biosensor should show no signal compared to the sample biosensor. If signal is observed in the reference biosensor (>10% of the sample signal), the reference biosensors must be subtracted from

the sample biosensors. If the reference biosensor shows signal < 10% of the sample signal, reference biosensors do not need to be used in the assay.

7.4.5. Look at the "Reference Sensor" tab within the Reference Subtractions and Data Correction Settings panel on the left. If non-specific binding is observed, right click on the Column 2 reference biosensors. Select "Set Sensor Type" and then select "Reference Sensor". The square ligand symbol will change to a diamond symbol. If non-specific binding is not observed, right click on the Column 2 reference biosensors. Select "Exclude Sensor(s) from Analysis

7.4.6. Subtract the reference biosensor as follows:

7.4.7. Look at the "Reference Sample" tab within the **Reference**

Subtractions and Data Correction Settings panel on the left. Right click on the reference well, zero concentration analyte, and select "Set Reference" -> "Reference Sample Well".

7.4.8. Right click on the reference well, zero concentration analyte, and select "Subtract Reference" -> "In Column".

7.4.9. Finally, click on the "Data Correction" Tab. Perform the data correction as follows:

7.4.9.1. Align Y-Axis: Average of Baseline Step

7.4.9.2. Inter-step Correction: Dissociation Step

Note: Only select this option if the baseline and dissociation wells are the same in the assay plate. Note: This option is only recommended when there is discontinuity between the association and dissociation sensorgram curves. It is not required.

7.4.9.3. Filtering: Check mark the Savitzky-Golay Filtering

Reference Subtractions and Data Correction Setti Reference Sensor Reference Sample Data Correction	
Reference Sensor Reference Sample Data Correction	ngs
Data Correction	
1 - Align Y Axis	
Shift all data in trace by value as selected below:	
Align Data to: Average of Baseline Step 💛	
Start: 175.00 🖨 End: 180.00 🖨	
2 - Inter-step Correction	
Shift all previous steps to specified time of selected step. Shift all subsequence steps to the end of selected step	
Align Data to: Dissociation Step \checkmark	
At time (s): 0.00	
3 - Filtering	
Savitzky-Golay filtering removes high-frequency noise from the data Savitzky-Golay Filtering	

- 7.4.10.The Full Trace and Cycle Graphs panel in the middle of the screen should display the reference subtracted and data corrected sensorgrams. Examine the Full Traces and Data Cycle curves.
- 7.4.11.Select the "Kinetics Analysis" tab at the top of the screen. The software will complete a preliminary data analysis and will try to fit the data.

7.4.12.Analyze the kinetics data by selecting the appropriate Fitting Parameters as follows:

😿 Fitting Parameters
Step to Analyze
Association Only
Dissociation Only
Association and Dissociation
Binding Model
Model: 1:1 \checkmark
Fitting
Type: Global (Group) 🗸
Group By
Sample ID 🛛 🗸
Rmax Values
Sensor (Unlinked)
Compound (Unlinked)
Linked
Window of Interest (from start of step)
Association: 0.0 to 600.0 secs
Dissociation: 0.0 to 1200.0 secs
Set to Entire Step Times Apply
Association: 0.0 to 600.0 secs Dissociation: 0.0 to 1200.0 secs Set to Entire Step Times Apply

7.4.13. Examine the data table at the bottom of the middle panel. Select each of the set of curves in the kinetics analysis. Right click on the selection and select the following:

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

Note: It is recommended to use a global 1:1 binding model. However, for covalent immobilization using the AR2G biosensors, a 2:1 heterogeneous binding model may provide better fitting. The signal should not have an on rate so fast that it saturates the sensor immediately and not be so slow that it cannot generate enough of an appropriate signal to fit properly. If there is contamination or impurities a 2:1 Heterogeneous ligand binding model may be more effective.

- 7.4.14. After global fitting, the calculated KD will be identical for each analyte concentration. Examine the Full X^2 value. Ideally, this value should be < 3. Examine the R^2 value. Ideally, this value should be > 0.95. Examine the residuals of the fit. Residuals should not be > +/- 10% nm of the maximum fitted curve. Re-analyze the data set if necessary, to fit the data. When analysis is complete, document the kinetics parameters, K_a and K_d, and the affinity KD value in the appropriate laboratory notebook.
- 7.4.15. Export the data analysis results to excel using the Export options at the top of the panel. Print out a copy of the sensorgrams for documentation.

7.5. Post Experimental Clean-up.

7.5.1. Discard tips after kinetics have been determined and remove plates from the instrumentation. Use a Kimwipe with 70% IPA to gently clean the light emitting sensor head.

8. MAINTENANCE

- 8.1. Make sure that spills are cleaned up as soon as they are discovered.
- 8.2. Remove any "stray" sensors that may have dropped into the instrument.
- 8.3. Make sure that the sensor "waste container" is emptied on a regular basis.

- 8.4. The waste container will hold 5 trays, or 480 sensors and the software will remind you to empty the tray after five runs –it is best to empty it after each run.
- 8.5. If possible, keep the Octet system on at All Times. Turn the system on / off will shorten the lifespan of the Lamp. At the end of the day, just close the Data Acquisition Program and keep the computer & Octet on.
- 8.6. Close the Data Acquisition Program at the end of the day (after the last experiment) and initiate the system on the following day to ensure "connectivity" of Octet & Software
- 8.7. Refresh/Reboot computer monthly to refresh internal memory
- 8.8. It is advised to have a yearly system check by a ForteBio Engineer performing a Preventive Maintenance.
- 8.9. Sensor manifold may accrue buffer salt residue, impeding the light source and effecting the sensorgram acquisition. Wiping the manifold with 70% IPA with a soft paper towel at least once a month will prevent the build-up of unwanted contaminants.

9. <u>REFERENCES</u>

- 9.1. Octet Red96e[™] Octet® System Data Acquisition User Guide, Release 11.1
- 9.2. Operating Guildelines for the Octet Red96e[™] Octet® System
- 9.3. Biomolecular Binding Kinetics Assays on the Octet Platform, Application Note #14
- 9.4. Octet® and BLItz® Systems: Optimize ligand loading density, Published 03/04/2019 06:28 PM | Updated 03/04/2019 06:35 PM
- 9.5. ForteBio Amine Reactive Second Generation (AR2G) Biosensors Technical Note #26

10.<u>APPENDIX A</u>

10.1. Optimize ligand loading density

- 10.1.1. On the bench, pipette 200 uL/ well of deionized, 0.22 μm H₂O into wells A1 H1 of a new Greiner Bio-One black 96 well plate (hydration tray).
- 10.1.2. Open a new pack of anti-mouse IgG Fc capture (AMC) (or Protein A/G) biosensors. Or alternatively, a pack that has already been opened can also be used if it is has been stored properly with the opening sealed shut.
- 10.1.3. Gently place the green biosensor tray containing eight AMC biosensors that correspond to wells A1 H1 on top of the hydration tray (black) taking care not to touch the tips of the biosensors. If necessary, use the Octet dedicated multichannel pipettor to transfer biosensors to the appropriate wells in the green biosensor tray before placing it on top of the hydration tray.
- 10.1.4. Place the biosensor hydration tray into the Octet Red 96e instrument on the left side. Hydrate the eight AMC biosensors for at least ten minutes.
- 10.1.5. Remove the 10X kinetics buffer from 4°C and let it equilibrate to room temperature.
- 10.1.6. In a 50 mL conical tube, dilute 2.0 mL of 10X PBS into 18 mL of 0.22 um filtered H₂O making a 20 mL 1X PBS stock solution.
- 10.1.7. In a 50 mL conical tube, dilute 2.0 mL of 10X Kinetics Buffer into 18 mL of 1X PBS solution making a 20 mL 1X kinetics buffer stock solution.
- 10.1.8. Remove the test monoclonal antibody (mouse or rabbit) from storage (4°C or -20°C) and let it equilibrate to room temperature.
- 10.1.9. Using 1.5 mL Eppendorf tubes, serially dilute the mouse or rabbit monoclonal antibody two-fold from 20 ug/mL to 0.313 ug/mL in 1X kinetics buffer as seen below.

- 10.1.10. Remove the test protein or peptide analyte(s) from storage. Let the test protein or peptide analyte(s) equilibrate to room temperature.
- 10.1.11. Dilute the test protein or peptide analyte(s) to a single high concentration ~ 20 x KD in 1X kinetics buffer for a total volume of 1.6 mL. Or, dilute the test protein or peptide analyte(s) to 50 nM if the KD is not known.
- 10.1.12. Pipette 200 uL each of 1X kinetics buffer, mouse or rabbitmonoclonal antibody, and protein test analyte into a new black 96-well, Greiner Bio-One microplate as seen below:

NOTE: Be sure to include a no ligand reference biosensor (red well) to test for non-specific binding.

- 10.1.13. Place the sample plate into the right side of the instrument.
- 10.1.14. Set up the assay on the Sartorius Octet Red96e instrument.

10.1.15. Ligand Optimization Assay Setup on the Octet

10.1.13.1. Click on File -> Open Method File...

10.1.13.2. Navigate to Share -> Instrumentation -> Octet -> Training, and open the

Ligand_Density_Optimization_Template

- 10.1.13.3. In the *Plate Definition* tab, highlight the *Test Ligand* in Wells A1-H1 under the Sample ID Column.
 - 10.1.13.4. Right click after selecting all wells and select Set Well Data.
 - 10.1.13.5. Input the appropriate name of the test ligand.
 - 10.1.13.6. Verify the titration under the Concentration (ug/mL) column ranges from 20 ug/mL 0.313 ug/mL.
 - 10.1.13.7. Highlight the *Test Analyte* in Wells A4 H4 under the Sample ID column.
 - 10.1.13.8. Right click after selecting all wells and select Set Well Data.
 - 10.1.13.9. Input the appropriate name of the test analyte.
 - 10.1.13.10. Input the molecular weight of the test analyte (kDa).
 - 10.1.13.11. Input the molar concentration of the test analyte (nM).

Well	Sample ID	Replicate Group	Туре	Conc (µq/ml)	MW (kD)	Molar Conc (nM)
B A1	1X Kinetics Buffer		Buffer			
🖲 B1	1X Kinetics Buffer		Buffer			
B C1	1X Kinetics Buffer		Buffer			
🖲 D1	1X Kinetics Buffer		Buffer			
🖲 E1	1X Kinetics Buffer		Buffer			
🖲 F1	1X Kinetics Buffer		Buffer			
🖲 G1	1X Kinetics Buffer		Buffer			
🖲 H1	1X Kinetics Buffer		Buffer			
🕒 A2	Test Ligand		Load	20		
🛈 B2	Test Ligand		Load	10		
C2 🛈	Test Ligand		Load	5		
🛈 D2	Test Ligand		Load	2.5		
🛈 E2	Test Ligand		Load	1.25		
🛈 F2	Test Ligand		Load	0.625		
🕛 G2	Test Ligand		Load	0.313		
🔵 H2	1X Kinetics Buffer		Reference	0		
B A3	1X Kinetics Buffer		Buffer			
B B3	1X Kinetics Buffer		Buffer			
B C3	1X Kinetics Buffer		Buffer			
B D3	1X Kinetics Buffer		Buffer			
B E3	1X Kinetics Buffer		Buffer			
B F3	1X Kinetics Buffer		Buffer			
🖲 G3	1X Kinetics Buffer		Buffer			
B H3	1X Kinetics Buffer		Buffer			
O A4	Test Analyte		Sample	5	100	50
🔘 B4	Test Analyte		Sample	5	100	50
O C4	Test Analyte		Sample	5	100	50
O D4	Test Analyte		Sample	5	100	50
🔘 E4	Test Analyte		Sample	5	100	50
O F4	Test Analyte		Sample	5	100	50
O G4	Test Analyte		Sample	5	100	50
O H4	Test Analyte		Sample	5	100	50

10.1.13.12. Click on the Assay Definition tab. Verify the assay

	Name	Time	Shake speed	Type	Threshold
	Baseline	180	1000	Baseline	
	Loading	300	1000	Loading	
•	Equilibration	600	1000	🛏 Baseline	
	Association	600	1000	Association	
	Dissociation	600	1000	Dissociation	

settings as seen below:

Assay Steps List-

New A	Assay	Move	e Up Move Dov	vn Remove I	Replicate Edit Step Info Tab	le
Assay	No.	Sample	Step Name	Step Type	Sensor Type	Assay Time
1	1	1	Equilibration	🛥 Baseline	AMC (Anti-mlgG Fc Capture)	
1	2	2	Loading	Loading	AMC (Anti-mlgG Fc Capture)	
1	3	3	Baseline	🛥 Baseline	AMC (Anti-mlgG Fc Capture)	
1	4	4	Association •	Association	AMC (Anti-mlgG Fc Capture)	
1	5	3	Dissociation	Dissociation	AMC (Anti-mlgG Fc Capture)	0:38:40

10.1.13.13. Click on the Sensor Assignment tab. Verify the biosensors appear as seen below.

10.1.13.14. Click on the Review Experiment tab. Review the assay steps by moving the blue slider.

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

10.1.13.15. Click on the Run Experiment tab. In the "Data File Location and Names" section, assign a primary directory folder destination in the "Kinetics data repository" field but clicking on the ellipses and creating folder in that destination. Assign a secondary "Experiment run name" folder within the primary destination clicking on the arrow and creating folder in that destination. In the "Run Settings" section check the "Delayed experiment start" box and get the timer for 600 seconds. Check the box with the option to "Shake sample plate while waiting". Check the box with the option for "Open runtime charts automatically" as well as the sub option "Automatically save runtime chart". Check the option "Set plate temperature (*C) to 25. Within the "Advanced Settings" location, set the acquisition rate to "Standard kinetics (5.0Hz, averaging by 20) ". Then proceed to start the experiment by clicking on the areen "Go" button.

10.1.16. Data Analysis

- 10.1.16.1. Open the ForteBio Data Analysis HT software. Click on the new workspace icon at the left of the screen.
- 10.1.16.2. Browse to the folder where the run was saved. Drag the pink results folder to the middle of the new workspace.
- 10.1.16.3. After the sensorgrams from the assay are loaded, click on the "Pre-Processed Data" tab at the top of the page.
- 10.1.16.4. Examine the sensorgrams. Evaluate the stability of the loading of the ligand molecule and the quantity of surface that was loaded onto the biosensors.

Note: For large molecules, it is important to avoid saturation of the biosensor to prevent overcrowding and any stearic hindrance that may occur with the analyte.

10.1.16.5. Select the optimum ligand loading density. It should be low enough to yield a *homogeneous* analyte binding signal of *sufficiently high* magnitude to allow scope for an analyte dilution series during the subsequent kinetics assay. Note: The following are recommended signals for the

biosensors after 5-10 minutes of loading. AMC: 0.5 – 2 nm ProA: 1 – 3 nm

 $\mathsf{PIUA.} \mathsf{I} = \mathsf{S} \mathsf{IIII}$

ProG: 0.5 – 1.5 nm

AR2G: 0.5 – 2 nm

SAX: 0.5 – 3 nm for large molecule

- 10.2. Optimize the pH for Ligand Loading
 - 10.2.1. On the bench, pipette 200 uL/ well of deionized, 0.22 μm H₂O into wells A1 – F1 of a new Greiner Bio-One black 96 well plate (hydration tray).
 - 10.2.2. Open a new pack of Amine Reactive Second Generation (AR2G) biosensors. Or alternatively, a pack that has already been opened can also be used if it is has been stored properly with the opening sealed shut.
 - 10.1.16. Gently place the green biosensor tray containing six AR2G biosensors that correspond to wells A1 F1 on top of the hydration tray (black) taking care not to touch the tips of the biosensors. If necessary, use the Octet dedicated multichannel pipettor to transfer biosensors to the appropriate wells in the green biosensor tray before placing it on top of the hydration tray.

- 10.1.17. Place the biosensor hydration tray into the Octet Red 96e instrument on the left side. Hydrate the six AR2G biosensors for at least ten minutes.
- 10.1.18. Remove the 10X kinetics buffer from 4°C and let it equilibrate to room temperature.
- 10.1.19. In a 50 mL conical tube, dilute 2.0 mL of 10X PBS into 18 mL of 0.22 um filtered H₂O making a 20 mL 1X PBS stock solution.
- 10.1.20. In a 50 mL conical tube, dilute 2.0 mL of 10X Kinetics Buffer into 18
 mL of 1X PBS solution making a 20 mL 1X kinetics buffer stock solution.
- 10.1.21. Add 200 uL of 1X kinetics buffer wells A5 F5 on a new Greiner Bio-One black 96 well assay plate.
- 10.1.22. Add 200 uL of water to wells A1 F1 (B).
- 10.1.23. Remove the test monoclonal antibody from storage (4°C or -20°C) and let it equilibrate to room temperature.
- 10.1.24. Using 1.5 mL Eppendorf tubes, dilute the monoclonal antibody to 10 ug/mL in 10 mM sodium acetate pH 4.0, pH 5.0, and pH 6.0.
 Prepare 250 uL of each pH concentration (for 2 wells). Add 200 uL / well of pH 4.0 to wells A3 and B3. Add 200 uL / well of pH 5.0 to wells C3 and D3. Add 200 uL / well of pH 6.0 to wells E3 and F3.
- 10.1.25. Remove the test protein or peptide analyte(s) from storage. Let the test protein or peptide analyte(s) equilibrate to room temperature.
- 10.1.26. Dilute the test protein or peptide analyte(s) to a single high concentration ~ 20 x KD in 1X kinetics buffer for a total volume of 1.3 mL. Or, dilute the test protein or peptide analyte(s) to 50 nM if the KD is not known. Add 200 uL / well to wells A6 – F6 (Pink).
- 10.1.27. Remove one aliquot each of EDC (400 mM) and s-NHS (200 mM) from the -20C. Thaw at room temperature.
- 10.1.28. Vortex briefly after thawing.
- 10.1.29. Prepare 1300 μ L of a 20 mM EDC and 10 mM s-NHS working reagent mix by adding 65 μ L each of the stock EDC and s-NHS

reagents to 1170 μ L of water. Mix thoroughly. Pipette 200 μ L/well of the EDC/s-NHS mixture into wells A2 – F2 (A).

Note: Use or refreeze EDC and s-NHS aliquots within 10 hours of thawing. Use EDC and s-NHS within 1 hour of mixing them together.

- 10.1.30. Remove 1M ethanolamine pH 8.5 from 4C.
- 10.1.31. Add 200 uL of 1M ethanolamine pH 8.5 to wells A4 F4 (Q).
- 10.1.32. Verify that the sample plate appears as seen below:

- 10.1.33. Place the sample plate into the right side of the instrument.
- 10.1.34. Set up the assay on the Sartorius Octet Red96e instrument.
- 10.1.35. pH Loading Optimization Assay Setup on the Octet
 - 10.1.35.1. Click on File -> Open Method File...
 - 10.1.35.2. Navigate to Share -> Instrumentation -> Octet -> Training, and open the

AR2G_pH_Scouting_Template

- 10.1.35.3. In the *Plate Definition* tab, highlight the *Test Ligand* in Wells A1-F1 under the Sample ID Column.
- 10.1.35.4. Right click after selecting all wells and select Set Well Data.
- 10.1.35.5. Input the appropriate name of the test ligand.

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

- 10.1.35.6. Verify the antibody concentration (ug/mL) column. A starting ligand concentration of at least 20 ug/mL is recommended. The ligand concentration may be decreased to as low as 5 ug/mL, however the immobilization time should be increased.
- 10.1.35.7. Highlight the *Test Analyte* in Wells A4 H4 under the Sample ID column.
- 10.1.35.8. Right click after selecting all wells and select Set Well Data.
- 10.1.35.9. Input the appropriate name of the test analyte. Input the molecular weight of the test analyte (kDa).

10.1.35.10. Verify the Assay Definition as seen below.

Ste	p Data List —											
	Add Copy R		Remov	Remove Regeneration Params		Thresho	old Params	5				
	Name	Time	Shake	speed		•	Th	reshold	d			
•	Equilibration	n 60	1000		₩ Cu	istom						
	Activation	300	1000		± Ac	tivation						
	Loading	600	1000		🖌 Lo	ading						
	Quenching	300	1000		Ł Qı	uenching						
	Baseline	120	1000		🛥 Ba	aseline						
	Association	300	1000		🗠 As	sociation						
	Dissociation	n 300	1000		占 Dis	ssociation						
Ass	ay Steps List	i										
N	lew Assay	Move	Up	Move Do	wn	Remove	Rep	licate	Edit Step	Info Tal	ble	
A	ssay No. Sa	ample S	Step Na	ame	Step	о Туре	Senso	r Type			Assay Time	Comment
1	1 1	E	Equilibra	tion 🔹	蒮 Cu	istom	AR2G (Amine	Reactive 2nd	Gen) -		
1	2 2	ŀ	Activatio	n	🛨 Ac	tivation	AR2G (Amine	Reactive 2nd	Gen)		
1	3 3	L	oading		🖌 Lo	ading	AR2G (Amine	Reactive 2nd	Gen)		
1	4 4	(Quenchi	ng	🛃 Qu	lenching	AR2G (Amino	Reactive 2nd	Gen)		
1	5 5	E	Baseline		🛏 Ba	solino		Amme				
			54001110			1361116	AR2G (Amine	Reactive 2nd	Gen)		
1	6 6	- A	Associat	ion	🖌 As	sociation	AR2G (AR2G (Amine Amine Amine	Reactive 2nd Reactive 2nd	Gen) Gen)		

- 10.1.35.11. Review the sensor assignment.
- 10.1.35.12. Review the Experiment using the blue slider.
- 10.1.35.13. Click on the Run Experiment tab. In the "Data File Location and Names" section, assign a primary directory folder destination in the "Kinetics data repository" field but clicking on the ellipses and

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

creating folder in that destination. Assign a secondary "Experiment run name" folder within the primary destination clicking on the arrow and creating folder in that destination. In the "Run Settings" section check the "Delayed experiment start" box and get the timer for 600 seconds. Check the box with the option to "Shake sample plate while waiting". Check the box with the option for "Open runtime charts automatically" as well as the sub option "Automatically save runtime chart". Check the option "Set plate temperature (*C) to 25. Within the "Advanced Settings" location, set the acquisition rate to "Standard kinetics (5.0Hz, averaging by 20) ". Then proceed to start the experiment by clicking on the green "Go" button.

- 10.1.36. Data Analysis
 - 10.1.36.1. Open the ForteBio Data Analysis HT software. Click on the new workspace icon at the left of the screen.
 - 10.1.36.2. Browse to the folder where the run was saved. Drag the pink results folder to the middle of the new workspace.
 - 10.1.36.3. After the sensorgrams from the assay are loaded, click on the "Pre-Processed Data" tab at the top of the page.
 - 10.1.36.4. Examine the sensorgrams. Evaluate the stability of the loading of the ligand molecule and the quantity of surface that was loaded onto the biosensors. The recommended loading surface is 0.5 – 2.0 nm.
 - 10.1.36.5. Click on the "Kinetic Analysis" tab at the top of the page.

10.1.36.6. Perform the fitting according to the parameters seen below:

ſ	Fitting Parameters
	Step to Analyze
	Association Only
	Dissociation Only
	Association and Dissociation
	Binding Model
	Model: 1:1 ×
	Fitting
	Type: Global (Group)
	Group By
	Sample ID
	Rmax Values
	Sensor (Unlinked)
	Compound (Unlinked)
	() Linked
	Window of Interest (from start of step)
	Association: 0.0 to 600.0 secs
	Dissociation: 0.0 to 1200.0 secs
	Set to Entire Step Times Apply

10.1.36.7. Examine the analyte sensorgrams for stability in the curvature. Identify the pH which results in the maximum signal under the mildest conditions.

