CPTC-TERF2-3 (CAB080271)

Uniprot ID: Q15554

Protein name: TERF2_HUMAN

Full name: Telomeric repeat-binding factor 2

Tissue specificity: Ubiquitous. Highly expressed in spleen, thymus, prostate, uterus, testis, small intestine, colon and peripheral blood leukocytes.

Function: Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes. In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo. Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded 5'- TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair. Required both to recruit DCLRE1B/Apollo to telomere and activate the exonuclease activity of DCLRE1B/Apollo. Preferentially binds to positive supercoiled DNA. Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology. Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length.

Subcellular location:

Nucleus (match to sequence model, experimental evidence)

Chromosome > Telomere (experimental evidence)

NOTE: Colocalizes with telomeric DNA in interphase cells and is located at chromosome ends during metaphase.

Protein existence: Experimental evidence at protein level

Comment:

Immunohistochemistry

	IHC protocol:	HIER pH6, Dilution 1:800
	IHC test staining:	Nuclear positivity in most tissues.
	Literature conformance:	Consistent with extensive gene/protein characterization data
	Literature significance:	
	RNA similarity:	Medium consistency between antibody staining and RNA expression data
	RNA tissue specificity:	Low tissue specificity
	RNA tissue distribution:	Detected in all
	IHC Sibling similarity:	Other antibody shows similar IHC staining pattern
	Reliability score:	Supported
	APE summary:	Ubiquitous nuclear expression.
	APE explanatory sentences:	Medium consistency between antibody staining and RNA expression data.
	Orthogonal validation:	No
	Independent validation:	No
	IHC Annotation summary:	Most normal tissues showed moderate to strong nuclear positivity.
		Most cancers showed moderate to strong nuclear positivity.